18 research outputs found

    OOGAN: Disentangling GAN with One-Hot Sampling and Orthogonal Regularization

    Full text link
    Exploring the potential of GANs for unsupervised disentanglement learning, this paper proposes a novel GAN-based disentanglement framework with One-Hot Sampling and Orthogonal Regularization (OOGAN). While previous works mostly attempt to tackle disentanglement learning through VAE and seek to implicitly minimize the Total Correlation (TC) objective with various sorts of approximation methods, we show that GANs have a natural advantage in disentangling with an alternating latent variable (noise) sampling method that is straightforward and robust. Furthermore, we provide a brand-new perspective on designing the structure of the generator and discriminator, demonstrating that a minor structural change and an orthogonal regularization on model weights entails an improved disentanglement. Instead of experimenting on simple toy datasets, we conduct experiments on higher-resolution images and show that OOGAN greatly pushes the boundary of unsupervised disentanglement.Comment: AAAI 202

    VIP5: Towards Multimodal Foundation Models for Recommendation

    Full text link
    Computer Vision (CV), Natural Language Processing (NLP), and Recommender Systems (RecSys) are three prominent AI applications that have traditionally developed independently, resulting in disparate modeling and engineering methodologies. This has impeded the ability for these fields to directly benefit from each other's advancements. With the recent development of foundation models, large language models have emerged as a potential general-purpose interface for unifying different modalities and problem formulations. In light of this, we propose the development of a multimodal foundation model (MFM) considering visual, textual, and personalization modalities under the P5 recommendation paradigm, thus named VIP5 (Visual P5), to unify various modalities and recommendation tasks. This will enable the processing of multiple modalities in a shared architecture for improved recommendations. To achieve this, we introduce multimodal personalized prompts to accommodate multiple modalities under a shared format. Additionally, we propose a parameter-efficient training method for foundation models, which involves freezing the P5 backbone and fine-tuning lightweight adapters, resulting in improved recommendation performance and increased efficiency in terms of training time and memory usage. Code and data of VIP5 are available at https://github.com/jeykigung/VIP5.Comment: Accepted by EMNLP 202

    Reinforcement Knowledge Graph Reasoning for Explainable Recommendation

    Full text link
    Recent advances in personalized recommendation have sparked great interest in the exploitation of rich structured information provided by knowledge graphs. Unlike most existing approaches that only focus on leveraging knowledge graphs for more accurate recommendation, we perform explicit reasoning with knowledge for decision making so that the recommendations are generated and supported by an interpretable causal inference procedure. To this end, we propose a method called Policy-Guided Path Reasoning (PGPR), which couples recommendation and interpretability by providing actual paths in a knowledge graph. Our contributions include four aspects. We first highlight the significance of incorporating knowledge graphs into recommendation to formally define and interpret the reasoning process. Second, we propose a reinforcement learning (RL) approach featuring an innovative soft reward strategy, user-conditional action pruning and a multi-hop scoring function. Third, we design a policy-guided graph search algorithm to efficiently and effectively sample reasoning paths for recommendation. Finally, we extensively evaluate our method on several large-scale real-world benchmark datasets, obtaining favorable results compared with state-of-the-art methods.Comment: Accepted in SIGIR 201

    Causal Collaborative Filtering

    Full text link
    Recommender systems are important and valuable tools for many personalized services. Collaborative Filtering (CF) algorithms -- among others -- are fundamental algorithms driving the underlying mechanism of personalized recommendation. Many of the traditional CF algorithms are designed based on the fundamental idea of mining or learning correlative patterns from data for matching, including memory-based methods such as user/item-based CF as well as learning-based methods such as matrix factorization and deep learning models. However, advancing from correlative learning to causal learning is an important problem, because causal/counterfactual modeling can help us to think outside of the observational data for user modeling and personalization. In this paper, we propose Causal Collaborative Filtering (CCF) -- a general framework for modeling causality in collaborative filtering and recommendation. We first provide a unified causal view of CF and mathematically show that many of the traditional CF algorithms are actually special cases of CCF under simplified causal graphs. We then propose a conditional intervention approach for dodo-calculus so that we can estimate the causal relations based on observational data. Finally, we further propose a general counterfactual constrained learning framework for estimating the user-item preferences. Experiments are conducted on two types of real-world datasets -- traditional and randomized trial data -- and results show that our framework can improve the recommendation performance of many CF algorithms.Comment: 14 pages, 5 figures, 3 table

    Learning Personalized Risk Preferences for Recommendation

    Full text link
    The rapid growth of e-commerce has made people accustomed to shopping online. Before making purchases on e-commerce websites, most consumers tend to rely on rating scores and review information to make purchase decisions. With this information, they can infer the quality of products to reduce the risk of purchase. Specifically, items with high rating scores and good reviews tend to be less risky, while items with low rating scores and bad reviews might be risky to purchase. On the other hand, the purchase behaviors will also be influenced by consumers' tolerance of risks, known as the risk attitudes. Economists have studied risk attitudes for decades. These studies reveal that people are not always rational enough when making decisions, and their risk attitudes may vary in different circumstances. Most existing works over recommendation systems do not consider users' risk attitudes in modeling, which may lead to inappropriate recommendations to users. For example, suggesting a risky item to a risk-averse person or a conservative item to a risk-seeking person may result in the reduction of user experience. In this paper, we propose a novel risk-aware recommendation framework that integrates machine learning and behavioral economics to uncover the risk mechanism behind users' purchasing behaviors. Concretely, we first develop statistical methods to estimate the risk distribution of each item and then draw the Nobel-award winning Prospect Theory into our model to learn how users choose from probabilistic alternatives that involve risks, where the probabilities of the outcomes are uncertain. Experiments on several e-commerce datasets demonstrate that our approach can achieve better performance than many classical recommendation approaches, and further analyses also verify the advantages of risk-aware recommendation beyond accuracy
    corecore